蓝紫光增强硅光电倍增器的研究

霍林章 谭何盛 何 燃 赵天琦 王瑞恒 梁 琨 韩德俊 杨 茹* 北京师范大学核科学与技术学院,北京 100875

摘要 弱光探测器在医学及空间测探等方面都有着极其重要的用途,硅光电倍增管(SiPM)作为弱光探测器有着优异的 性能。所研制的体电阻淬灭 SiPM,具有良好的单光子探测性能。提高了体电阻淬灭 SiPM 在蓝紫光区(360~420 nm) 的探测效率,提出了一种深槽隔离结构的 SiPM 探测器,通过模拟优化了器件结构,并取得了初步实验结果。 关键词 探测器;硅光电倍增管;深槽隔离;蓝紫光;模拟

中图分类号 O436 文献标识码 A

doi: 10.3788/LOP52.110401

Research of Blue-Violet Enhanced Silicon Photomultiplier

Huo Linzhang Tan Hesheng He Ran Zhao Tianqi Wang Ruiheng Liang Kun Han Dejun Yang Ru

College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China

Abstract Weak light detector has very important application in medicine, space exploration field, etc. As a kind of weak light detector, silicon photon multiplier(SiPM) possesses excellent performance. SiPM with bulk integrated quenching resistor which is developed at novel device laboratory (NDL), has a strong ability of single photon detection. Aimed at improving the photo detection efficiency(PDE) of bulk integrated quenching resistor SiPM in the blue violet region(360~420 nm), the thesis presents a kind of deep trench isolation SiPM. The structure of the device is optimized through the simulation, and the preliminary experimental results have been obtained.

Key words detectors; silicon photomultiplier; deep trench isolation; blue violet; simulation **OCIS codes** 040.5250; 040.5160

1 引 言

闪烁探测器是核辐射测量中常用的一类探测器,它由闪烁体、光电倍增管(PMT)、相应的电子学仪器三 个主要部分组成。PMT是闪烁探测器的主要部件之一,增益达到10°,但PMT体积大,工作电压和功耗高,容 易损坏,对磁场敏感以及不适合做大规模阵列等缺点限制了它的应用范围。相反地,硅光电倍增管(SiPM) 却克服了以上的缺点,因此其成为替代PMT的理想器件。

1989年,俄罗斯的A Gasanov等^{III}首先将被动淬灭的单光子雪崩光电探测器(SPAD)集成在一起,这种 集成化的探测器就是SiPM。SiPM探测器由许多微小单元并联而成,每个小单元包括一个雪崩二极管和一 个串联的淬灭电阻。工作状态下二极管处于盖格模式,有光子入射时,产生雪崩电流,由于串联电阻的分压 作用,雪崩会自动淬灭,二极管单元恢复到工作电压,SiPM的输出信号是所有二极管单元信号的线性叠 加。进入21世纪以来,国际上针对SiPM的研究逐渐活跃起来,SiPM的发展也非常迅速,国际上多家公司如 意大利的FBK、爱尔兰SensL、日本滨松等已经实现了SiPM的商品化生产。虽然各个公司的产品均不相同, 名称也不同,如MPPC,SiPM等,但多数公司的生产的SiPM都采用以多晶硅为淬灭电阻的结构。

收稿日期: 2015-02-15; 收到修改稿日期: 2015-03-15; 网络出版日期: 2015-10-20

基金项目: 国家自然科学基金(11375029)

作者简介: 霍林章(1989—),男,硕士研究生,主要从事半导体弱光探测器方面的研究。E-mail: huo166.ok@163.com **导师简介**: 杨 茹(1972—),女,博士,副教授,主要从事半导体探测器方面的研究。

E-mail: yangru@bnu.edu.cn(通信联系人)

2010年,本实验室研制成功了体电阻淬灭的n-on-p结构的SiPM^[2],这种探测器不需要外加淬灭电阻, 其电阻由器件本身的低掺杂区域提供,这种结构的SiPM可以有效提高器件的填充因子,使探测效率和动态 范围同时得到较好的兼顾,研制出的体电阻淬灭的SiPM探测效率的峰值波长在460 nm^[2]。目前,相对常用 的有 Nal、CsI等闪烁体,出现了一些性能更加优良的闪烁体如溴化镧(LaBr₃)、硅酸镥(LSO)、硅酸钇镥 (LYSO)等,其中LSO和LYSO是响应速度快、光产额高及高密度的闪烁晶体^[3];LYSO具有较低的自吸收率, 很高的光输出和最好的能量分辨率^[4];LaBr₃具有极高的光产额和能量分辨率^[3],常被用作医学成像、空间探 测等高端探测器。LYSO和LSO发出的光的峰值波长在420 nm,LaBr₃峰值波长在360 nm,可是现有结构的 体电阻SiPM在这一波长范围处探测效率很低,因此,本文提出了一种深槽隔离结构的SiPM探测器,通过模 拟优化了器件结构,提高了探测效率。

2 蓝紫光增强 SiPM 探测器的结构设计

由于蓝紫光在硅中的吸收长度很小,如图1所示^[6],400 nm 波长的光在硅中的吸收长度只有 0.1 μm,所 以探测器的设计应尽量减小表面死区的厚度,提高光生载流子的收集效率。由于电子的离化系数远大于空 穴的离化系数^[6],所以电子触发雪崩的概率要比空穴大得多。考虑到蓝紫光在 Si 中吸收长度和雪崩触发概 率的因素,对于蓝紫光探测增强 SiPM,应该选择 p-on-n的结构。

图1 光波长-吸收长度

Fig.1 Wavelength versus absorption length

器件垂直结构具有 p+/p/n+的二极管结构,通过器件模拟得到的载流子分布和电场分布如图2、图3所示,pn结结深约为0.5 µm,在工作偏压下,电场区应尽量靠近器件表面,电场方向使电子向下漂移,穿过高场区引发雪崩。

SiPM包含成百上千个单元,每个单元之间应该有很好的电学隔离。本实验室研制成功的n-on-p结构的体电阻淬灭的SiPM采用的是pn结隔离方法,器件结构如图4所示⁽⁶⁾,"Penrich"区域与N+区域形成器件单元,也是雪崩倍增区;

N+与低浓度掺杂衬底形成的pn结在衬底中有较深的耗尽区,从而形成单元之间的pn结隔离区,即 "gap"区。但对于p-on-n结构,pn结隔离技术并不适用,原因是n型衬底若要达到像p型衬底那样的电阻 率,需要将n型的掺杂浓度降低,这样容易导致"gap"区的扩展,进而可能影响相邻器件单元的正常工作。研 制的新器件采用的是深槽隔离技术进行单元之间的隔离,如图4所示。新器件采用隔离槽技术之后,不但能 得到足够大的淬灭电阻,且之前器件的光学串话问题理论上会有所改善。所设计的每一个器件包含30×30 个单元,图5显示了高阻区熔硅衬底上2个单元的结构。

3 特性模拟及结果分析

图 6 是测量的初步研制的 SiPM 器件加光与未加光时的 *I*-V曲线。加光后器件电流增大,光响应明显。 图中可看到,测量得到的器件击穿电压约 95 V,而模拟给出的击穿电压约 20 V。产生这种差异的原因可能 与高电阻率的衬底分压有关。分别对同样掺杂条件但不同衬底厚度(30,40,50 和 100 μm)的 SiPM 器件进行 了模拟。

从中可以看出,由于磷注入在单元边缘留有未注入区(空缺),表层高浓度 p+区域与衬底形成 n+/p-结, 在单元边缘处的衬底中形成了很宽很深的耗尽区,每个单元的电子电流都被耗尽区隔离开,直到器件厚度 达到100 μm时,如图7所示,相邻单元的电子电流才有较明显的合流。因此,推测该器件的淬灭电阻很大, 并且随着衬底厚度增加线性地增大。这是由于不同厚度器件淬灭电阻的横截面积是几乎一样的,而长度几 乎线性变化,从而导致淬灭电阻也几乎线性变化。

击穿电压的模拟结果证明了上述推测,如图8所示,器件衬底厚度每增加10μm,击穿电压就增加约7V。 由于淬灭电阻的分压作用,不同衬底厚度的器件击穿电压也不同。器件厚度达到100μm以上后,电子电流 出现合流,再增加衬底厚度器件单元的淬灭电阻几乎不变。研制的新器件的厚度约为500μm,因此器件最 终的击穿电压应在90V左右,符合最终的实验结构。

解决上述击穿电压随衬底厚度变化问题的一个方法是n+区的注入采用全局注入,单元边缘不留空缺。 模拟结果如图9所示,n+区的改为全局注入后,相邻单元的电子电流在20μm处就出现了较明显的合流,从 而淬灭电阻的大小符合设计要求,击穿电压不再随衬底厚度增加而变化,但实际结果仍需进一步的实验 证实。

Fig.9 Electric current density distribution

4 结 论

在本实验室已经成功制备体电阻淬灭 SiPM 的基础上,为了提高对蓝紫光的探测效率,设计了一种深槽隔 离、p-on-n结构的 SiPM 探测器,理论上对蓝紫光具有更高的探测效率。通过模拟,优化了载流子浓度分布,得到了适合蓝紫光探测和雪崩倍增的电场分布。第一批研制出的器件具有较好的击穿特性,且有明显的光响 应,取得了初步成功;通过模拟,分析了击穿电压偏高的根本原因,并为下一步的研究提出了解决方案。

致谢 衷心感谢本实验室李秀芝、田卓喜两位师傅在工艺期间的不辞劳苦,感谢本学院李小明老师、半导体 所李建明老师在离子注入方面的热心帮助

参考文献

1 A Gasanov, V Golovin, Z Sadygov, et al.. Avalanche Photodector: 1702831[P]. 1989-09-11.

- 2 G Q Zhang, X B Hu, C Z Hu, *et al.*. Demonstration of a silicon photomultiplier with bulk integrated quenching resistors on epitaxial silicon[J]. Nuclear Inst and Methods in Physics Research A, 2010. 621(1): 116–120.
- 3 Zhang Bin, Zhao Shujun. New developments in PET detector technology[J]. Nuclear Physics Review, 2012, 29(3): 259– 265

张 斌,赵书俊. PET探测器技术的新进展[J]. 原子核物理评论, 2012, 29(3): 259-265.

4 Ramirez R A, Wai-Hoi Wong, Soonseok Kim, *et al.*. A comparison of BGO, GSO, MLS, LGSO, LYSO and LSO scintillation materials for high-spatial-resolution animal PET detectors[C]. IEEE Nuclear Science Symposium Conference Record, 2005: 2835 – 2839.

5 D Renker, E Lorenz. Advances in solid state photon detectors[J]. JINST, 2009, 4: 1-54.

6 W T TSANG. 半导体光检测器[M]. 杜宝勋译. 北京: 电子工业出版社, 1992: 3-21,182-190.

栏目编辑:韩 峰